metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cai-Feng Ding,^a Yan-Fang Miao,^b Bing-Qing Tian,^a Xue-Mei Li^a and Shu-Sheng Zhang^a*

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ^bQingdao Radio and TV University, 266001 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å Some non-H atoms missing R factor = 0.045 wR factor = 0.128 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

Aquadichloro(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II)

In the title compound, [NiCl₂(C₁₄H₁₂N₂)(H₂O)], there are two molecules in the asymmetric unit. Each Ni atom is fivecoordinate in a geometry between trigonal–bipyramidal and tetragonal–pyrimidal. Molecules are linked into a threedimensional framework by O–H···Cl and C–H···Cl hydrogen bonds. The packing is further stabilized by π - π interactions between the phenanthroline ring systems.

Comment

We have recently reported the structure of aquadichloro(2,9dimethyl-1,10-phenanthroline- $\kappa^2 N,N$)copper(II) (Ding *et al.*, 2006). In our ongoing studies, the title compound, (I), was obtained by the reaction of 2,9-dimethyl-1,10-phenanthroline and NiCl₂.

The asymmetric unit of (I) contains two crystallographically independent molecules (Fig. 1). The corresponding bond lengths and angles of these two molecules agree at a level of two standard deviations (Table 1). Each Ni^{II} atom is fivecoordinated by two N atoms from one 9,10-dimethylphennathroline ligand, one O atom from a water molecule and two Cl atoms. This NiON₂Cl₂ unit adopts a geometry between trigonal–bipyramidal and tetragonal–bipyramidal.

In each molecule there is an intramolecular hydrogen bond (C14—H14A···O1 and C15—H15A···O2), forming a sixmembered ring. In the crystal structure, molecules are linked into a three-dimensional framework by O—H···Cl and C— H···Cl hydrogen bonds (Table 2 and Fig. 2). The packing is further stabilized by π - π stacking interactions involving the phenanthroline ring systems with a $Cg3 \cdot \cdot Cg7^{iv}$ distance of 3.637 Å [Cg3 and Cg7 are the centroids of the N1/C2–C5/C13 and C5–C8/C12/C13 rings, respectively; symmetry code: (iv) 3 - x, 2 - y, 1 - z]. Received 11 April 2006 Accepted 11 April 2006

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline (0.21 g, 1 mmol) in ethanol (10 ml) a solution of NiCl₂ (0.13 g, 1 mmol) in distilled water (10 ml) was added. The mixture was stirred and refluxed for 7 h. The hot solution was then filtered into a flask containing ethanol-water (1:1 v/v). Green crystals appeared over a period of one week by slow evaporation at room temperature.

V = 1518.7 (5) Å³

 $D_r = 1.556 \text{ Mg m}^{-3}$

 $0.30 \times 0.16 \times 0.06 \text{ mm}$

8714 measured reflections

5826 independent reflections 4892 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.62 \text{ mm}^{-1}$

T = 293 (2) K Plate, green

 $R_{\rm int} = 0.017$

 $\theta_{\rm max} = 26.1^\circ$

Z = 4

Crystal data

$[\text{NiCl}_2(\text{C}_{14}\text{H}_{12}\text{N}_2)(\text{H}_2\text{O})]$ M _r = 711.76
Triclinic, $P\overline{1}$
a = 7.5631 (13) Å
b = 11.501 (2) Å
c = 18.924 (4) Å
$\alpha = 106.692 \ (3)^{\circ}$
$\beta = 93.545 \ (4)^{\circ}$
$\gamma = 103.467 \ (2)^{\circ}$

Data collection

- Siemens SMART 1000 CCD areadetector diffractometer ω scans
- Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.641, \ T_{\max} = 0.909$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0726P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.9988P]
$wR(F^2) = 0.128$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
5826 reflections	$\Delta \rho_{\rm max} = 1.04 \text{ e} \text{ Å}^{-3}$
361 parameters	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

Ni1-O1	2.015 (3)	Ni2-O2	2.011 (3)
Ni1-N1	2.049 (3)	Ni2-N4	2.049 (3)
Ni1-N2	2.059 (3)	Ni2-N3	2.053 (3)
Ni1-Cl1	2.3431 (10)	Ni2-Cl4	2.3435 (10)
Ni1-Cl2	2.3548 (10)	Ni2-Cl3	2.3515 (10)

Table	2		
TT 1		1	1

Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1W1 \cdots Cl3^{i}$	0.85	2.40	3.107 (4)	140
$O1 - H1W1 \cdot \cdot \cdot Cl4$	0.85	2.80	3.106 (3)	103
$O2-H1W2\cdots Cl1$	0.86	2.34	3.141 (3)	157
$O1-H2W1\cdots Cl4$	0.86	2.79	3.106 (3)	104
O2−H2W2···Cl2 ⁱⁱ	0.86	2.31	3.152 (3)	166
$C14-H14A\cdots O1$	0.96	2.40	3.315 (6)	159
C15-H15A···O2	0.96	2.28	3.223 (6)	168
$C17-H17A\cdots Cl4^{iii}$	0.93	2.83	3.634 (6)	145

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x + 2, -y + 1, -z.

C-bound H atoms were refined using a riding model with C-H bond distances of 0.93–0.96 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ (methyl C). The H atoms of the water molecules were located in a difference Fourier map and refined as riding at the distances

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.

Figure 2

The crystal packing viewed down the b axis, showing the π - π interactions. Hydrogen bonds are indicated by dashed lines.

shown in Table 2, with $U_{iso}(H) = 1.2U_{eq}(O)$. The maximum electrondensity peak in the final difference map lies 0.89 Å from atom Cl4.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. 05-2-JC-80) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Ding, C.-F., Li, X.-M., Zhu, M., Xu, H. & Zhang, S.-S. (2006). Acta Cryst. E62, m604-m605.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.