Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cai-Feng Ding, ${ }^{\text {a }}$ Yan-Fang Miao, ${ }^{\text {b }}$

 Bing-Qing Tian, ${ }^{\text {a }}$ Xue-Mei Li ${ }^{\text {a }}$ and Shu-Sheng Zhang ${ }^{\text {a }}$${ }^{\text {a }}$ College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ${ }^{\text {b }}$ Qingdao Radio and TV University, 266001 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Some non-H atoms missing

R factor $=0.045$

$w R$ factor $=0.128$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aquadichloro(2,9-dimethyl-1,10-phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ nickel(II)

In the title compound, $\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, there are two molecules in the asymmetric unit. Each Ni atom is fivecoordinate in a geometry between trigonal-bipyramidal and tetragonal-pyrimidal. Molecules are linked into a threedimensional framework by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The packing is further stabilized by $\pi-\pi$ interactions between the phenanthroline ring systems.

Comment

We have recently reported the structure of aquadichloro(2,9-dimethyl-1,10-phenanthroline- $\left.\kappa^{2} N, N\right)$ copper(II) (Ding et al., 2006). In our ongoing studies, the title compound, (I), was obtained by the reaction of 2,9-dimethyl-1,10-phenanthroline and NiCl_{2}.

(I)

The asymmetric unit of (I) contains two crystallographically independent molecules (Fig. 1). The corresponding bond lengths and angles of these two molecules agree at a level of two standard deviations (Table 1). Each $\mathrm{Ni}^{\mathrm{II}}$ atom is fivecoordinated by two N atoms from one 9,10-dimethylphennathroline ligand, one O atom from a water molecule and two Cl atoms. This $\mathrm{NiON}_{2} \mathrm{Cl}_{2}$ unit adopts a geometry between trigonal-bipyramidal and tetragonal-bipyramidal.

In each molecule there is an intramolecular hydrogen bond ($\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1$ and $\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O} 2$), forming a sixmembered ring. In the crystal structure, molecules are linked into a three-dimensional framework by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 2 and Fig. 2). The packing is further stabilized by $\pi-\pi$ stacking interactions involving the phenanthroline ring systems with a $\mathrm{Cg} 3 \cdots \mathrm{Cg} 7^{\text {iv }}$ distance of $3.637 \AA$ [Cg3 and Cg7 are the centroids of the $\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 5 / \mathrm{C} 13$ and $\mathrm{C} 5-\mathrm{C} 8 / \mathrm{C} 12 / \mathrm{C} 13$ rings, respectively; symmetry code: (iv) $3-x, 2-y, 1-z]$.

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline $(0.21 \mathrm{~g}, 1 \mathrm{mmol})$ in ethanol $(10 \mathrm{ml})$ a solution of $\mathrm{NiCl}_{2}(0.13 \mathrm{~g}, 1 \mathrm{mmol})$ in distilled water $(10 \mathrm{ml})$ was added. The mixture was stirred and refluxed for 7 h . The hot solution was then filtered into a flask containing ethanol-water $(1: 1 \mathrm{v} / v)$. Green crystals appeared over a period of one week by slow evaporation at room temperature.

Crystal data

$\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=711.76$
Triclinic, $P \overline{1}$
$a=7.5631$ (13) £
$b=11.501$ (2) \AA
$c=18.924$ (4) \AA
$\alpha=106.692$ (3) ${ }^{\circ}$
$\beta=93.545$ (4) ${ }^{\circ}$
$\gamma=103.467(2)^{\circ}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.641, T_{\text {max }}=0.909$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0726 P)^{2}\right. \\
&+0.9988 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.04 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.

Figure 2
The crystal packing viewed down the b axis, showing the $\pi-\pi$ interactions. Hydrogen bonds are indicated by dashed lines.
shown in Table 2, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The maximum electrondensity peak in the final difference map lies $0.89 \AA$ from atom Cl 4 .

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Special Project of Qingdao for Leadership of Science and Technology (grant No. 05-2-JC-80) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 2005BS04007).

References

Ding, C.-F., Li, X.-M., Zhu, M., Xu, H. \& Zhang, S.-S. (2006). Acta Cryst. E62, m604-m605
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

